set_role¶
- DataFrame.set_role(cols, role, time_formats=None)[source]¶
Assigns a new role to one or more columns.
When switching from a role based on type float to a role based on type string or vice verse, an implicit type conversion will be conducted. The
time_formats
argument is used to interpret time format string. For more information on roles, please refer to the user guide.- Args:
- columns (str, FloatColumn, StringColumn, or List[str, FloatColumn, StringColumn]):
The columns or the names of the columns.
- role (str):
The role to be assigned.
- time_formats (str or List[str], optional):
Formats to be used to parse the time stamps. This is only necessary, if an implicit conversion from a StringColumn to a time stamp is taking place.
- Example:
data_df = dict( animal=["hawk", "parrot", "goose"], votes=[12341, 5127, 65311], date=["04/06/2019", "01/03/2019", "24/12/2018"]) df = getml.DataFrame.from_dict(data_df, "animal_elections") df.set_role(['animal'], getml.data.roles.categorical) df.set_role(['votes'], getml.data.roles.numerical) df.set_role( ['date'], getml.data.roles.time_stamp, time_formats=['%d/%m/%Y']) df
| date | animal | votes | | time stamp | categorical | numerical | --------------------------------------------------------- | 2019-06-04T00:00:00.000000Z | hawk | 12341 | | 2019-03-01T00:00:00.000000Z | parrot | 5127 | | 2018-12-24T00:00:00.000000Z | goose | 65311 |