getml.hyperopt

Automatically find the best parameters for

Examples:

The easiest way to conduct a hyperparameter optimization is to use the built-in tuning routines. Note that these tuning routines usually take a day to complete unless we use very small data sets as we do in this example.

from getml import data
from getml import datasets
from getml import engine
from getml import feature_learning
from getml.feature_learning import aggregations
from getml.feature_learning import loss_functions
from getml import hyperopt
from getml import pipeline
from getml import predictors

# ----------------

engine.set_project("examples")

# ----------------

population_table, peripheral_table = datasets.make_numerical()

# ----------------
# Construct placeholders

population_placeholder = data.Placeholder("POPULATION")
peripheral_placeholder = data.Placeholder("PERIPHERAL")
population_placeholder.join(peripheral_placeholder, "join_key", "time_stamp")

# ----------------

feature_learner1 = feature_learning.Multirel(
    aggregation=[
        aggregations.Count,
        aggregations.Sum
    ],
    loss_function=loss_functions.SquareLoss,
    num_features=10,
    share_aggregations=1.0,
    max_length=1,
    num_threads=0
)

# ----------------

feature_learner2 = feature_learning.Relboost(
    loss_function=loss_functions.SquareLoss,
    num_features=10
)

# ----------------

predictor = predictors.LinearRegression()

# ----------------

pipe = pipeline.Pipeline(
    population=population_placeholder,
    peripheral=[peripheral_placeholder],
    feature_learners=[feature_learner1, feature_learner2],
    predictors=[predictor]
)

# ----------------

tuned_pipeline = getml.hyperopt.tune_feature_learners(
    pipeline=base_pipeline,
    population_table_training=population_table,
    population_table_validation=population_table,
    peripheral_tables=[peripheral_table]
)

# ----------------

tuned_pipeline = getml.hyperopt.tune_predictors(
    pipeline=tuned_pipeline,
    population_table_training=population_table,
    population_table_validation=population_table,
    peripheral_tables=[peripheral_table]
)

If you want to define the hyperparameter space and the tuning routing yourself, this is how you can do that:

from getml import data
from getml import datasets
from getml import engine
from getml import feature_learning
from getml.feature_learning import aggregations
from getml.feature_learning import loss_functions
from getml import hyperopt
from getml import pipeline
from getml import predictors

# ----------------

engine.set_project("examples")

# ----------------

population_table, peripheral_table = datasets.make_numerical()

# ----------------
# Construct placeholders

population_placeholder = data.Placeholder("POPULATION")
peripheral_placeholder = data.Placeholder("PERIPHERAL")
population_placeholder.join(peripheral_placeholder, "join_key", "time_stamp")

# ----------------
# Base model - any parameters not included
# in param_space will be taken from this.

feature_learner1 = feature_learning.Multirel(
    aggregation=[
        aggregations.Count,
        aggregations.Sum
    ],
    loss_function=loss_functions.SquareLoss,
    num_features=10,
    share_aggregations=1.0,
    max_length=1,
    num_threads=0
)

# ----------------
# Base model - any parameters not included
# in param_space will be taken from this.

feature_learner2 = feature_learning.Relboost(
    loss_function=loss_functions.SquareLoss,
    num_features=10
)

# ----------------
# Base model - any parameters not included
# in param_space will be taken from this.

predictor = predictors.LinearRegression()

# ----------------

pipe = pipeline.Pipeline(
    population=population_placeholder,
    peripheral=[peripheral_placeholder],
    feature_learners=[feature_learner1, feature_learner2],
    predictors=[predictor]
)

# ----------------
# Build a hyperparameter space.
# We have two feature learners and one
# predictor, so this is how we must
# construct our hyperparameter space.
# If we only wanted to optimize the predictor,
# we could just leave out the feature_learners.

param_space = {
    "feature_learners": [
        {
            "num_features": [10, 50],
        },
        {
            "max_depth": [1, 10],
            "min_num_samples": [100, 500],
            "num_features": [10, 50],
            "reg_lambda": [0.0, 0.1],
            "shrinkage": [0.01, 0.4]
        }],
    "predictors": [
        {
            "reg_lambda": [0.0, 10.0]
        }
    ]
}

# ----------------
# Wrap a GaussianHyperparameterSearch around the reference model

gaussian_search = hyperopt.GaussianHyperparameterSearch(
    pipeline=pipe,
    param_space=param_space,
    n_iter=30,
    score=pipeline.scores.rsquared
)

gaussian_search.fit(
    population_table_training=population_table,
    population_table_validation=population_table,
    peripheral_tables=[peripheral_table]
)

# ----------------

# We want 5 additional iterations.
gaussian_search.n_iter = 5

# We do not want another burn-in-phase,
# so we set ratio_iter to 0.
gaussian_search.ratio_iter = 0.0

# This widens the hyperparameter space.
gaussian_search.param_space["feature_learners"][1]["num_features"] = [10, 100]

# This narrows the hyperparameter space.
gaussian_search.param_space["predictors"][0]["reg_lambda"] = [0.0, 0.0]

# This continues the hyperparameter search using the previous iterations as
# prior knowledge.
gaussian_search.fit(
    population_table_training=population_table,
    population_table_validation=population_table,
    peripheral_tables=[peripheral_table]
)

# ----------------

all_hyp = hyperopt.list_hyperopts()

best_pipeline = gaussian_search.best_pipeline

Classes

GaussianHyperparameterSearch(param_space, ...)

Bayesian hyperparameter optimization using a Gaussian process.

LatinHypercubeSearch(param_space, pipeline)

Latin hypercube sampling of the hyperparameters.

RandomSearch(param_space, pipeline[, score, ...])

Uniformly distributed sampling of the hyperparameters.

Functions

list_hyperopts()

Lists all hyperparameter optimization objects present in the engine.

load_hyperopt(name)

Loads a hyperparameter optimization object from the getML engine into Python.

tune_feature_learners(pipeline, container[, ...])

A high-level interface for optimizing the feature learners of a Pipeline.

tune_predictors(pipeline, container[, ...])

A high-level interface for optimizing the predictors of a getml.Pipeline.

Modules

kernels

Collection of kernel functions to be used by the hyperparameter optimizations.

optimization

Collection of optimization algorithms to be used by the hyperparameter optimizations.

burn_in

Collection of burn-in algorithms to be used by the hyperparameter optimizations.