score¶
- Pipeline.score(population_table: Union[DataFrame, View, Subset], peripheral_tables: Optional[Union[Dict[str, Union[DataFrame, View]], Sequence[Union[DataFrame, View]]]] = None) Scores [source]¶
Calculates the performance of the
predictor
.Returns different scores calculated on population_table and peripheral_tables.
- Args:
- population_table (
DataFrame
,View
orSubset
): Main table containing the target variable(s) and corresponding to the
population
Placeholder
instance variable.- peripheral_tables (List[
DataFrame
orView
], dict,DataFrame
orView
, optional): Additional tables corresponding to the
peripheral
Placeholder
instance variable. If passed as a list, the order needs to match the order of the corresponding placeholders passed toperipheral
.If you pass a
Subset
to population_table, the peripheral tables from that subset will be used. If you use aContainer
,StarSchema
orTimeSeries
, that means you are passing aSubset
.
- population_table (
- Note:
Only fitted pipelines (
fit()
) can be scored.