fit¶
- Pipeline.fit(population_table: Union[DataFrame, View, Subset], peripheral_tables: Optional[Union[Dict[str, Union[DataFrame, View]], Sequence[Union[DataFrame, View]]]] = None, validation_table: Optional[Union[DataFrame, View, Subset]] = None, check: bool = True) Pipeline [source]¶
Trains the feature learning algorithms, feature selectors and predictors.
- Args:
- population_table (
DataFrame
,View
orSubset
): Main table containing the target variable(s) and corresponding to the
population
Placeholder
instance variable.- peripheral_tables (List[
DataFrame
orView
], dict,DataFrame
orView
, optional): Additional tables corresponding to the
peripheral
Placeholder
instance variable. If passed as a list, the order needs to match the order of the corresponding placeholders passed toperipheral
.If you pass a
Subset
to population_table, the peripheral tables from that subset will be used. If you use aContainer
,StarSchema
orTimeSeries
, that means you are passing aSubset
.- validation_table (
DataFrame
,View
orSubset
): Main table containing the target variable(s) and corresponding to the
population
Placeholder
instance variable. If you are passing a subset, that subset must be derived from the same container as population_table.Only used for early stopping in
XGBoostClassifier
andXGBoostRegressor
.- check (bool):
Whether you want to check the data model before fitting. The checks are equivalent to the checks run by
check()
.
- population_table (