Source code for getml.hyperopt.hyperopt

# Copyright 2022 The SQLNet Company GmbH
#
# This file is licensed under the Elastic License 2.0 (ELv2).
# Refer to the LICENSE.txt file in the root of the repository
# for details.
#


"""
Contains hyperparameter optimization routines.
"""

import copy
import json
import time
from typing import Any, Dict, List, Union

import getml.communication as comm
from getml.data import Container, StarSchema, TimeSeries
from getml.data.helpers import _remove_trailing_underscores
from getml.pipeline import delete, exists, load, metrics, Pipeline
from getml.pipeline.helpers import _make_id, _print_time_taken, _transform_peripheral
from getml.utilities.formatting import _SignatureFormatter

from .burn_in import latin_hypercube, random
from .kernels import matern52
from .optimization import nelder_mead
from .validation import _validate_hyperopt

# -----------------------------------------------------------------------------


def _get_json_obj(name):
    """
    Retrieves a JSON representation of the hyperopt object *name*
    from the engine.
    """

    cmd: Dict[str, Any] = {}

    cmd["name_"] = name
    cmd["type_"] = "Hyperopt.refresh"

    with comm.send_and_get_socket(cmd) as sock:
        msg = comm.recv_string(sock)

    if msg[0] != "{":
        comm.engine_exception_handler(msg)

    return json.loads(msg)


# -----------------------------------------------------------------------------


class _Hyperopt:
    """
    Base class that is not meant to be called directly by the user.
    """

    def __init__(
        self,
        param_space: Dict[str, Any],
        pipeline: Pipeline,
        score: str,
        n_iter: int,
        seed: int,
        ratio_iter=1.0,
        optimization_algorithm=nelder_mead,
        optimization_burn_in_algorithm=latin_hypercube,
        optimization_burn_ins=15,
        surrogate_burn_in_algorithm=latin_hypercube,
        gaussian_kernel=matern52,
        gaussian_optimization_burn_in_algorithm=latin_hypercube,
        gaussian_optimization_algorithm=nelder_mead,
        gaussian_optimization_burn_ins=50,
        gaussian_nugget=50,
        early_stopping=True,
    ):
        self._id = "NOT SENT TO ENGINE"
        self._type = "_Hyperopt"
        self._score = score

        self._original_param_space = param_space

        self.evaluations: List[Any] = []

        self.pipeline = copy.deepcopy(pipeline)
        self.param_space = param_space
        self.n_iter = n_iter
        self.seed = seed

        self.ratio_iter = ratio_iter
        self.optimization_algorithm = optimization_algorithm
        self.optimization_burn_in_algorithm = optimization_burn_in_algorithm
        self.optimization_burn_ins = optimization_burn_ins
        self.surrogate_burn_in_algorithm = surrogate_burn_in_algorithm
        self.gaussian_kernel = gaussian_kernel
        self.gaussian_optimization_algorithm = gaussian_optimization_algorithm
        self.gaussian_optimization_burn_in_algorithm = (
            gaussian_optimization_burn_in_algorithm
        )
        self.gaussian_optimization_burn_ins = gaussian_optimization_burn_ins
        self.gaussian_nugget = gaussian_nugget
        self.early_stopping = early_stopping

        _Hyperopt._supported_params = list(self.__dict__.keys())  # type: ignore

    # ----------------------------------------------------------------

    def __repr__(self):
        return str(self)

    # ------------------------------------------------------------

    def _append_underscore(self, some_dict):
        """Helper functions that returns a trailing underscore to all keys in a dict"""

        cmd: Dict[str, Any] = {}

        for kkey in some_dict:
            if kkey == "evaluations":
                cmd[kkey + "_"] = some_dict[kkey]

            elif isinstance(some_dict[kkey], dict):
                cmd[kkey + "_"] = self._append_underscore(some_dict[kkey])

            elif isinstance(some_dict[kkey], list):
                cmd[kkey + "_"] = [
                    self._append_underscore(elem) if isinstance(elem, dict) else elem
                    for elem in some_dict[kkey]
                ]

            else:
                cmd[kkey + "_"] = some_dict[kkey]

        return cmd

    # ------------------------------------------------------------

    def _best_pipeline_name(self):
        if not self.evaluations:
            raise ValueError("The hyperparameter optimization has not been fitted!")

        def key(x):
            return x["evaluation"]["score"]

        # The hyperparameter optimization always minimizes.
        # Scores like AUC or RSquared are multiplied by -1.
        return min(self.evaluations, key=key)["pipeline_name"]

    # ------------------------------------------------------------

    def _getml_deserialize(self) -> Dict[str, Any]:
        """
        Expresses the hyperparameter optimization in a form the engine can understand.
        """
        cmd = self._append_underscore(self.__dict__)

        del cmd["_id_"]
        del cmd["_score_"]
        del cmd["_type_"]
        del cmd["_original_param_space_"]

        cmd["name_"] = self.id
        cmd["score_"] = self.score
        cmd["type_"] = self.type

        cmd["pipeline_"] = self.pipeline._getml_deserialize()

        return cmd

    # ----------------------------------------------------------------

    def _parse_json_obj(self, json_obj: Dict[str, Any]) -> "_Hyperopt":
        pipeline = self.pipeline._parse_cmd(json_obj["pipeline_"])

        del json_obj["pipeline_"]

        kwargs = _remove_trailing_underscores(json_obj)

        evaluations: List[Any] = []

        if "evaluations" in kwargs:
            evaluations = kwargs["evaluations"]
            del kwargs["evaluations"]

        param_space = kwargs["param_space"]

        del kwargs["param_space"]

        del kwargs["name"]
        del kwargs["type"]

        id_ = self.id

        self.__init__(param_space=param_space, pipeline=pipeline, **kwargs)  # type: ignore

        self._id = id_

        self.evaluations = evaluations

        return self

    # ----------------------------------------------------------------

    def _save(self):
        cmd = dict()
        cmd["type_"] = "Hyperopt.save"
        cmd["name_"] = self.id

        comm.send(cmd)

    # ------------------------------------------------------------

    def _send(self):
        self._id = _make_id()
        self.pipeline._id = self._id
        cmd = self._getml_deserialize()
        comm.send(cmd)
        return self

    # ------------------------------------------------------------

    @property
    def best_pipeline(self):
        """
        The best pipeline that is part of the hyperparameter optimization.

        This is always based on the validation
        data you have passed even if you have chosen to
        score the pipeline on other data afterwards.
        """
        name = self._best_pipeline_name()
        return load(name)

    # ------------------------------------------------------------

    def clean_up(self):
        """
        Deletes all pipelines associated with hyperparameter optimization,
        but the best pipeline.
        """
        best_pipeline = self._best_pipeline_name()
        names = [obj["pipeline_name"] for obj in self.evaluations]
        for name in names:
            if name == best_pipeline:
                continue
            if exists(name):
                delete(name)

    # ------------------------------------------------------------

    def fit(
        self,
        container: Union[Container, StarSchema, TimeSeries],
        train: str = "train",
        validation: str = "validation",
    ):
        """Launches the hyperparameter optimization.

        Args:
            container (:class:`~getml.data.Container`):
                The data container used for the hyperparameter tuning.

            train (str, optional):
                The name of the subset in 'container' used for training.

            validation (str, optional):
                The name of the subset in 'container' used for validation.
        """

        if isinstance(container, (StarSchema, TimeSeries)):
            container = container.container

        if not isinstance(container, Container):
            raise TypeError(
                "'container' must be a `~getml.data.Container`, "
                + "a `~getml.data.StarSchema` or a `~getml.data.TimeSeries`"
            )

        if not isinstance(train, str):
            raise TypeError("""'train' must be a string""")

        if not isinstance(validation, str):
            raise TypeError("""'validation' must be a string""")

        self.pipeline.check(container[train])

        population_table_training = container[train].population

        population_table_validation = container[validation].population

        peripheral_tables = _transform_peripheral(
            container[train].peripheral, self.pipeline.peripheral
        )

        self._send()

        cmd: Dict[str, Any] = {}

        cmd["name_"] = self.id
        cmd["type_"] = "Hyperopt.launch"

        cmd["population_training_df_"] = population_table_training._getml_deserialize()

        cmd[
            "population_validation_df_"
        ] = population_table_validation._getml_deserialize()

        cmd["peripheral_dfs_"] = [
            elem._getml_deserialize() for elem in peripheral_tables
        ]

        with comm.send_and_get_socket(cmd) as sock:
            begin = time.time()
            msg = comm.log(sock)
            end = time.time()

        if msg != "Success!":
            comm.engine_exception_handler(msg)

        print()
        _print_time_taken(begin, end, "Time taken: ")

        self._save()

        return self.refresh()

    # ------------------------------------------------------------

    @property
    def id(self) -> str:
        """
        Name of the hyperparameter optimization.
        This is used to uniquely identify it on the engine.
        """
        return self._id

    # ------------------------------------------------------------

    @property
    def name(self) -> str:
        """
        Returns the ID of the hyperparameter optimization.
        The name property is kept for backward compatibility.
        """
        return self._id

    # ------------------------------------------------------------

    def refresh(self) -> "_Hyperopt":
        """Reloads the hyperparameter optimization from the engine.

        Returns:
            :class:`~getml.Pipeline`:
                Current instance
        """
        json_obj = _get_json_obj(self.id)
        return self._parse_json_obj(json_obj)

    # ------------------------------------------------------------

    @property
    def score(self):
        """
        The score to be optimized.
        """
        return self._score

    # ------------------------------------------------------------

    @property
    def type(self):
        """
        The algorithm used for the hyperparameter optimization.
        """
        return self._type


# -----------------------------------------------------------------------------


[docs]class GaussianHyperparameterSearch(_Hyperopt): """Bayesian hyperparameter optimization using a Gaussian process. After a burn-in period, a Gaussian process is used to pick the most promising parameter combination to be evaluated next based on the knowledge gathered throughout previous evaluations. Accessing the quality of potential combinations will be done using the expected information (EI). Args: param_space (dict): Dictionary containing numerical arrays of length two holding the lower and upper bounds of all parameters which will be altered in `pipeline` during the hyperparameter optimization. If we have two feature learners and one predictor, the hyperparameter space might look like this: .. code-block:: python param_space = { "feature_learners": [ { "num_features": [10, 50], }, { "max_depth": [1, 10], "min_num_samples": [100, 500], "num_features": [10, 50], "reg_lambda": [0.0, 0.1], "shrinkage": [0.01, 0.4] }], "predictors": [ { "reg_lambda": [0.0, 10.0] } ] } If we only want to optimize the predictor, then we can leave out the feature learners. pipeline (:class:`~getml.Pipeline`): Base pipeline used to derive all models fitted and scored during the hyperparameter optimization. Be careful when constructing it since only the parameters present in `param_space` will be overwritten. It defines the data schema and any hyperparameters that are not optimized. score (str, optional): The score to optimize. Must be from :mod:`~getml.pipeline.metrics`. n_iter (int, optional): Number of iterations in the hyperparameter optimization and thus the number of parameter combinations to draw and evaluate. Range: [1, :math:`\\infty`] seed (int, optional): Seed used for the random number generator that underlies the sampling procedure to make the calculation reproducable. Due to nature of the underlying algorithm, this is only the case if the fit is done without multithreading. To reflect this, a `seed` of None is only allowed to be set to an actual integer if both ``num_threads`` and ``n_jobs`` instance variables of the ``predictor`` and ``feature_selector`` in `model` - if they are instances of either :class:`~getml.predictors.XGBoostRegressor` or :class:`~getml.predictors.XGBoostClassifier` - are set to 1. Internally, a `seed` of None will be mapped to 5543. Range: [0, :math:`\\infty`] ratio_iter (float, optional): Ratio of the iterations used for the burn-in. For a `ratio_iter` of 1.0, all iterations will be spent in the burn-in period resulting in an equivalence of this class to :class:`~getml.hyperopt.LatinHypercubeSearch` or :class:`~getml.hyperopt.RandomSearch` - depending on `surrogate_burn_in_algorithm`. Range: [0, 1] As a *rule of thumb* at least 70 percent of the evaluations should be spent in the burn-in phase. The more comprehensive the exploration of the `param_space` during the burn-in, the less likely it is that the Gaussian process gets stuck in local minima. optimization_algorithm (string, optional): Determines the optimization algorithm used for the local search in the optimization of the expected information (EI). Must be from :mod:`~getml.hyperopt.optimization`. optimization_burn_in_algorithm (string, optional): Specifies the algorithm used to draw initial points in the burn-in period of the optimization of the expected information (EI). Must be from :mod:`~getml.hyperopt.burn_in`. optimization_burn_ins (int, optional): Number of random evaluation points used during the burn-in of the minimization of the expected information (EI). After the surrogate model - the Gaussian process - was successfully fitted to the previous parameter combination, the algorithm is able to calculate the EI for a given point. In order to get to the next combination, the EI has to be maximized over the whole parameter space. Much like the GaussianProcess itself, this requires a burn-in phase. Range: [3, :math:`\\infty`] surrogate_burn_in_algorithm (string, optional): Specifies the algorithm used to draw new parameter combinations during the burn-in period. Must be from :mod:`~getml.hyperopt.burn_in`. gaussian_kernel (string, optional): Specifies the 1-dimensional kernel of the Gaussian process which will be used along each dimension of the parameter space. All of the choices below will result in continuous sample paths and their main difference is the degree of smoothness of the results with 'exp' yielding the least and 'gauss' yielding the most smooth paths. Must be from :mod:`~getml.hyperopt.kernels`. gaussian_optimization_algorithm (string, optional): Determines the optimization algorithm used for the local search in the fitting of the Gaussian process to the previous parameter combinations. Must be from :mod:`~getml.hyperopt.optimization`. gaussian_optimization_burn_in_algorithm (string, optional): Specifies the algorithm used to draw new parameter combinations during the burn-in period of the optimization of the Gaussian process. Must be from :mod:`~getml.hyperopt.burn_in`. gaussian_optimization_burn_ins (int, optional): Number of random evaluation points used during the burn-in of the fitting of the Gaussian process. Range: [3, :math:`\\infty`] early_stopping (bool, optional): Whether you want to apply early stopping to the predictors. Note: A Gaussian hyperparameter search works like this: - It begins with a burn-in phase, usually about 70% to 90% of all iterations. During that burn-in phase, the hyperparameter space is sampled more or less at random. You can control this phase using ``ratio_iter`` and ``surrogate_burn_in_algorithm``. - Once enough information has been collected, it fits a Gaussian process on the hyperparameters with the ``score`` we want to maximize or minimize as the predicted variable. Note that the Gaussian process has hyperparameters itself, which are also optimized. You can control this phase using ``gaussian_kernel``, ``gaussian_optimization_algorithm``, ``gaussian_optimization_burn_in_algorithm`` and ``gaussian_optimization_burn_ins``. - It then uses the Gaussian process to predict the expected information (EI), which is how much additional information it might get from evaluating a particular point in the hyperparameter space. The expected information is to be maximized. The point in the hyperparameter space with the maximum expected information is the next point that is actually evaluated (meaning a new pipeline with these hyperparameters is trained). You can control this phase using ``optimization_algorithm``, ``optimization_burn_ins`` and ``optimization_burn_in_algorithm``. In a nutshell, the GaussianHyperparameterSearch behaves like human data scientists: - At first, it picks random hyperparameter combinations. - Once it has gained a better understanding of the hyperparameter space, it starts evaluating hyperparameter combinations that are particularly interesting. References: - `Carl Edward Rasmussen and Christopher K. I. Williams, MIT Press, 2006 <http://www.gaussianprocess.org/gpml/>`_ - `Julien Villemonteix, Emmanuel Vazquez, and Eric Walter, 2009 <https://arxiv.org/pdf/cs/0611143.pdf>`_ Example: .. code-block:: python from getml import data from getml import datasets from getml import engine from getml import feature_learning from getml.feature_learning import aggregations from getml.feature_learning import loss_functions from getml import hyperopt from getml import pipeline from getml import predictors # ---------------- engine.set_project("examples") # ---------------- population_table, peripheral_table = datasets.make_numerical() # ---------------- # Construct placeholders population_placeholder = data.Placeholder("POPULATION") peripheral_placeholder = data.Placeholder("PERIPHERAL") population_placeholder.join(peripheral_placeholder, "join_key", "time_stamp") # ---------------- # Base model - any parameters not included # in param_space will be taken from this. fe1 = feature_learning.Multirel( aggregation=[ aggregations.Count, aggregations.Sum ], loss_function=loss_functions.SquareLoss, num_features=10, share_aggregations=1.0, max_length=1, num_threads=0 ) # ---------------- # Base model - any parameters not included # in param_space will be taken from this. fe2 = feature_learning.Relboost( loss_function=loss_functions.SquareLoss, num_features=10 ) # ---------------- # Base model - any parameters not included # in param_space will be taken from this. predictor = predictors.LinearRegression() # ---------------- pipe = pipeline.Pipeline( population=population_placeholder, peripheral=[peripheral_placeholder], feature_learners=[fe1, fe2], predictors=[predictor] ) # ---------------- # Build a hyperparameter space. # We have two feature learners and one # predictor, so this is how we must # construct our hyperparameter space. # If we only wanted to optimize the predictor, # we could just leave out the feature_learners. param_space = { "feature_learners": [ { "num_features": [10, 50], }, { "max_depth": [1, 10], "min_num_samples": [100, 500], "num_features": [10, 50], "reg_lambda": [0.0, 0.1], "shrinkage": [0.01, 0.4] }], "predictors": [ { "reg_lambda": [0.0, 10.0] } ] } # ---------------- # Wrap a GaussianHyperparameterSearch around the reference model gaussian_search = hyperopt.GaussianHyperparameterSearch( pipeline=pipe, param_space=param_space, n_iter=30, score=pipeline.metrics.rsquared ) gaussian_search.fit( population_table_training=population_table, population_table_validation=population_table, peripheral_tables=[peripheral_table] ) # ---------------- # We want 5 additional iterations. gaussian_search.n_iter = 5 # We do not want another burn-in-phase, # so we set ratio_iter to 0. gaussian_search.ratio_iter = 0.0 # This widens the hyperparameter space. gaussian_search.param_space["feature_learners"][1]["num_features"] = [10, 100] # This narrows the hyperparameter space. gaussian_search.param_space["predictors"][0]["reg_lambda"] = [0.0, 0.0] # This continues the hyperparameter search using the previous iterations as # prior knowledge. gaussian_search.fit( population_table_training=population_table, population_table_validation=population_table, peripheral_tables=[peripheral_table] ) # ---------------- all_hyp = hyperopt.list_hyperopts() best_pipeline = gaussian_search.best_pipeline Note: Not supported in the getML community edition. """ def __init__( self, param_space: Dict[str, Any], pipeline: Pipeline, score=metrics.rmse, n_iter=100, seed=5483, ratio_iter=0.80, optimization_algorithm=nelder_mead, optimization_burn_in_algorithm=latin_hypercube, optimization_burn_ins=500, surrogate_burn_in_algorithm=latin_hypercube, gaussian_kernel=matern52, gaussian_optimization_burn_in_algorithm=latin_hypercube, gaussian_optimization_algorithm=nelder_mead, gaussian_optimization_burn_ins=500, gaussian_nugget=50, early_stopping=True, ): super().__init__( param_space=param_space, pipeline=pipeline, score=score, n_iter=n_iter, seed=seed, ratio_iter=ratio_iter, optimization_algorithm=optimization_algorithm, optimization_burn_in_algorithm=optimization_burn_in_algorithm, optimization_burn_ins=optimization_burn_ins, surrogate_burn_in_algorithm=surrogate_burn_in_algorithm, gaussian_kernel=gaussian_kernel, gaussian_optimization_algorithm=gaussian_optimization_algorithm, gaussian_optimization_burn_in_algorithm=gaussian_optimization_burn_in_algorithm, gaussian_optimization_burn_ins=gaussian_optimization_burn_ins, gaussian_nugget=gaussian_nugget, early_stopping=early_stopping, ) self._type = "GaussianHyperparameterSearch" self.validate() # ---------------------------------------------------------------- def __str__(self): obj_dict = copy.deepcopy(self.__dict__) del obj_dict["pipeline"] del obj_dict["param_space"] del obj_dict["evaluations"] obj_dict["type"] = self.type obj_dict["score"] = self.score sig = _SignatureFormatter(data=obj_dict) return sig._format() # ------------------------------------------------------------
[docs] def validate(self): """ Validate the parameters of the hyperparameter optimization. """ _validate_hyperopt(_Hyperopt._supported_params, **self.__dict__) # type: ignore
# -----------------------------------------------------------------------------
[docs]class LatinHypercubeSearch(_Hyperopt): """Latin hypercube sampling of the hyperparameters. Uses a multidimensional, uniform cumulative distribution function to drawn the random numbers from. For drawing `n_iter` samples, the distribution will be divided in `n_iter`*`n_iter` hypercubes of equal size (`n_iter` per dimension). `n_iter` of them will be selected in such a way only one per dimension is used and an independent and identically-distributed (iid) random number is drawn within the boundaries of the hypercube. A latin hypercube search can be seen as a compromise between a grid search, which iterates through the entire hyperparameter space, and a random search, which draws completely random samples from the hyperparameter space. Args: param_space (dict): Dictionary containing numerical arrays of length two holding the lower and upper bounds of all parameters which will be altered in `pipeline` during the hyperparameter optimization. If we have two feature learners and one predictor, the hyperparameter space might look like this: .. code-block:: python param_space = { "feature_learners": [ { "num_features": [10, 50], }, { "max_depth": [1, 10], "min_num_samples": [100, 500], "num_features": [10, 50], "reg_lambda": [0.0, 0.1], "shrinkage": [0.01, 0.4] }], "predictors": [ { "reg_lambda": [0.0, 10.0] } ] } If we only want to optimize the predictor, then we can leave out the feature learners. pipeline (:class:`~getml.Pipeline`): Base pipeline used to derive all models fitted and scored during the hyperparameter optimization. Be careful in constructing it since only those parameters present in `param_space` will be overwritten. It defines the data schema and any hyperparameters that are not optimized. score (str, optional): The score to optimize. Must be from :mod:`~getml.pipeline.metrics`. n_iter (int, optional): Number of iterations in the hyperparameter optimization and thus the number of parameter combinations to draw and evaluate. Range: [1, :math:`\\infty`] seed (int, optional): Seed used for the random number generator that underlies the sampling procedure to make the calculation reproducible. Due to nature of the underlying algorithm this is only the case if the fit is done without multithreading. To reflect this, a `seed` of None represents an unreproducible and is only allowed to be set to an actual integer if both ``num_threads`` and ``n_jobs`` instance variables of the ``predictor`` and ``feature_selector`` in `model` - if they are instances of either :class:`~getml.predictors.XGBoostRegressor` or :class:`~getml.predictors.XGBoostClassifier` - are set to 1. Internally, a `seed` of None will be mapped to 5543. Range: [0, :math:`\\infty`] Example: .. code-block:: python from getml import data from getml import datasets from getml import engine from getml import feature_learning from getml.feature_learning import aggregations from getml.feature_learning import loss_functions from getml import hyperopt from getml import pipeline from getml import predictors # ---------------- engine.set_project("examples") # ---------------- population_table, peripheral_table = datasets.make_numerical() # ---------------- # Construct placeholders population_placeholder = data.Placeholder("POPULATION") peripheral_placeholder = data.Placeholder("PERIPHERAL") population_placeholder.join(peripheral_placeholder, "join_key", "time_stamp") # ---------------- # Base model - any parameters not included # in param_space will be taken from this. fe1 = feature_learning.Multirel( aggregation=[ aggregations.Count, aggregations.Sum ], loss_function=loss_functions.SquareLoss, num_features=10, share_aggregations=1.0, max_length=1, num_threads=0 ) # ---------------- # Base model - any parameters not included # in param_space will be taken from this. fe2 = feature_learning.Relboost( loss_function=loss_functions.SquareLoss, num_features=10 ) # ---------------- # Base model - any parameters not included # in param_space will be taken from this. predictor = predictors.LinearRegression() # ---------------- pipe = pipeline.Pipeline( population=population_placeholder, peripheral=[peripheral_placeholder], feature_learners=[fe1, fe2], predictors=[predictor] ) # ---------------- # Build a hyperparameter space. # We have two feature learners and one # predictor, so this is how we must # construct our hyperparameter space. # If we only wanted to optimize the predictor, # we could just leave out the feature_learners. param_space = { "feature_learners": [ { "num_features": [10, 50], }, { "max_depth": [1, 10], "min_num_samples": [100, 500], "num_features": [10, 50], "reg_lambda": [0.0, 0.1], "shrinkage": [0.01, 0.4] }], "predictors": [ { "reg_lambda": [0.0, 10.0] } ] } # ---------------- # Wrap a LatinHypercubeSearch around the reference model latin_search = hyperopt.LatinHypercubeSearch( pipeline=pipe, param_space=param_space, n_iter=30, score=pipeline.metrics.rsquared ) latin_search.fit( population_table_training=population_table, population_table_validation=population_table, peripheral_tables=[peripheral_table] ) Note: Not supported in the getML community edition. """ def __init__( self, param_space: Dict[str, Any], pipeline: Pipeline, score=metrics.rmse, n_iter=100, seed=5483, **kwargs, ): super().__init__( param_space=param_space, pipeline=pipeline, score=score, n_iter=n_iter, seed=seed, **kwargs, ) self._type = "LatinHypercubeSearch" self.surrogate_burn_in_algorithm = latin_hypercube self.validate() # ---------------------------------------------------------------- def __str__(self): obj_dict = dict() obj_dict["type"] = self.type obj_dict["score"] = self.score obj_dict["n_iter"] = self.n_iter obj_dict["seed"] = self.seed sig = _SignatureFormatter(data=obj_dict) return sig._format() # ------------------------------------------------------------
[docs] def validate(self): """ Validate the parameters of the hyperparameter optimization. """ _validate_hyperopt(_Hyperopt._supported_params, **self.__dict__) # type: ignore if self.surrogate_burn_in_algorithm != latin_hypercube: raise ValueError( "'surrogate_burn_in_algorithm' must be '" + latin_hypercube + "'." ) if self.ratio_iter != 1.0: raise ValueError("'ratio_iter' must be 1.0.")
# -----------------------------------------------------------------------------
[docs]class RandomSearch(_Hyperopt): """Uniformly distributed sampling of the hyperparameters. During every iteration, a new set of hyperparameters is chosen at random by uniformly drawing a random value in between the lower and upper bound for each dimension of `param_space` independently. Args: param_space (dict): Dictionary containing numerical arrays of length two holding the lower and upper bounds of all parameters which will be altered in `pipeline` during the hyperparameter optimization. If we have two feature learners and one predictor, the hyperparameter space might look like this: .. code-block:: python param_space = { "feature_learners": [ { "num_features": [10, 50], }, { "max_depth": [1, 10], "min_num_samples": [100, 500], "num_features": [10, 50], "reg_lambda": [0.0, 0.1], "shrinkage": [0.01, 0.4] }], "predictors": [ { "reg_lambda": [0.0, 10.0] } ] } If we only want to optimize the predictor, then we can leave out the feature learners. pipeline (:class:`~getml.Pipeline`): Base pipeline used to derive all models fitted and scored during the hyperparameter optimization. Be careful in constructing it since only those parameters present in `param_space` will be overwritten. It defines the data schema and any hyperparameters that are not optimized. score (str, optional): The score to optimize. Must be from :mod:`~getml.pipeline.metrics`. n_iter (int, optional): Number of iterations in the hyperparameter optimization and thus the number of parameter combinations to draw and evaluate. Range: [1, :math:`\\infty`] seed (int, optional): Seed used for the random number generator that underlies the sampling procedure to make the calculation reproducible. Due to nature of the underlying algorithm this is only the case if the fit is done without multithreading. To reflect this, a `seed` of None represents an unreproducible and is only allowed to be set to an actual integer if both ``num_threads`` and ``n_jobs`` instance variables of the ``predictor`` and ``feature_selector`` in `model` - if they are instances of either :class:`~getml.predictors.XGBoostRegressor` or :class:`~getml.predictors.XGBoostClassifier` - are set to 1. Internally, a `seed` of None will be mapped to 5543. Range: [0, :math:`\\infty`] Example: .. code-block:: python from getml import data from getml import datasets from getml import engine from getml import feature_learning from getml.feature_learning import aggregations from getml.feature_learning import loss_functions from getml import hyperopt from getml import pipeline from getml import predictors # ---------------- engine.set_project("examples") # ---------------- population_table, peripheral_table = datasets.make_numerical() # ---------------- # Construct placeholders population_placeholder = data.Placeholder("POPULATION") peripheral_placeholder = data.Placeholder("PERIPHERAL") population_placeholder.join(peripheral_placeholder, "join_key", "time_stamp") # ---------------- # Base model - any parameters not included # in param_space will be taken from this. fe1 = feature_learning.Multirel( aggregation=[ aggregations.Count, aggregations.Sum ], loss_function=loss_functions.SquareLoss, num_features=10, share_aggregations=1.0, max_length=1, num_threads=0 ) # ---------------- # Base model - any parameters not included # in param_space will be taken from this. fe2 = feature_learning.Relboost( loss_function=loss_functions.SquareLoss, num_features=10 ) # ---------------- # Base model - any parameters not included # in param_space will be taken from this. predictor = predictors.LinearRegression() # ---------------- pipe = pipeline.Pipeline( population=population_placeholder, peripheral=[peripheral_placeholder], feature_learners=[fe1, fe2], predictors=[predictor] ) # ---------------- # Build a hyperparameter space. # We have two feature learners and one # predictor, so this is how we must # construct our hyperparameter space. # If we only wanted to optimize the predictor, # we could just leave out the feature_learners. param_space = { "feature_learners": [ { "num_features": [10, 50], }, { "max_depth": [1, 10], "min_num_samples": [100, 500], "num_features": [10, 50], "reg_lambda": [0.0, 0.1], "shrinkage": [0.01, 0.4] }], "predictors": [ { "reg_lambda": [0.0, 10.0] } ] } # ---------------- # Wrap a RandomSearch around the reference model random_search = hyperopt.RandomSearch( pipeline=pipe, param_space=param_space, n_iter=30, score=pipeline.metrics.rsquared ) random_search.fit( population_table_training=population_table, population_table_validation=population_table, peripheral_tables=[peripheral_table] ) Note: Not supported in the getML community edition. """ def __init__( self, param_space: Dict[str, Any], pipeline: Pipeline, score=metrics.rmse, n_iter=100, seed=5483, **kwargs, ): super().__init__( param_space=param_space, pipeline=pipeline, score=score, n_iter=n_iter, seed=seed, **kwargs, ) self._type = "RandomSearch" self.surrogate_burn_in_algorithm = random self.validate() # ---------------------------------------------------------------- def __str__(self): obj_dict: Dict[str, Any] = {} obj_dict["type"] = self.type obj_dict["score"] = self.score obj_dict["n_iter"] = self.n_iter obj_dict["seed"] = self.seed sig = _SignatureFormatter(data=obj_dict) return sig._format() # ------------------------------------------------------------
[docs] def validate(self): """ Validate the parameters of the hyperparameter optimization. """ _validate_hyperopt(_Hyperopt._supported_params, **self.__dict__) # type: ignore if self.surrogate_burn_in_algorithm != random: raise ValueError("'surrogate_burn_in_algorithm' must be '" + random + "'.") if self.ratio_iter != 1.0: raise ValueError("'ratio_iter' must be 1.0.")
# -----------------------------------------------------------------------------