Source code for getml.sqlite3.connect

# Copyright 2021 The SQLNet Company GmbH

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.

"""
Contains a wrapper around connect.
"""

import sqlite3

from .contains import _contains
from .count_above_mean import _CountAboveMean
from .count_below_mean import _CountBelowMean
from .count_distinct_over_count import _CountDistinctOverCount
from .email_domain import _email_domain
from .ewma import (
    _EWMA1S,
    _EWMA1M,
    _EWMA1H,
    _EWMA1D,
    _EWMA7D,
    _EWMA30D,
    _EWMA90D,
    _EWMA365D,
)
from .first import _First
from .get_word import _get_word
from .kurtosis import _Kurtosis
from .last import _Last
from .median import _Median
from .mode import _Mode
from .num_max import _NumMax
from .num_min import _NumMin
from .num_words import _num_words
from .quantiles import (
    _Q1,
    _Q5,
    _Q10,
    _Q25,
    _Q75,
    _Q90,
    _Q95,
    _Q99,
)
from .skew import _Skew
from .stddev import _Stddev
from .time_since_first_maximum import _TimeSinceFirstMaximum
from .time_since_first_minimum import _TimeSinceFirstMinimum
from .time_since_last_maximum import _TimeSinceLastMaximum
from .time_since_last_minimum import _TimeSinceLastMinimum
from .trend import _Trend
from .var import _Var
from .variation_coefficient import _VariationCoefficient


[docs]def connect(database): """ Generates a new sqlite3 connection. This connection contains all customized aggregations and transformation functions needed to execute the SQL pipeline generated by getML. Other than that it behaves just like a normal sqlite3 connection from the Python standard library. Args: database (str): Filename of the database. Use ':memory:' to create an in-memory database. """ if not isinstance(database, str): raise TypeError("'database' must be of type str") if sqlite3.sqlite_version < "3.33.0": raise ValueError( "getML requires SQLite version 3.33.0 or above. Found version " + sqlite3.sqlite_version + ". Please upgrade Python and/or the Python sqlite3 package." ) conn = sqlite3.connect(database) conn.create_function("contains", 2, _contains) conn.create_function("email_domain", 1, _email_domain) conn.create_function("get_word", 2, _get_word) conn.create_function("num_words", 1, _num_words) conn.create_aggregate("COUNT_ABOVE_MEAN", 1, _CountAboveMean) conn.create_aggregate("COUNT_BELOW_MEAN", 1, _CountBelowMean) conn.create_aggregate("COUNT_DISTINCT_OVER_COUNT", 1, _CountDistinctOverCount) conn.create_aggregate("EWMA_1S", 2, _EWMA1S) conn.create_aggregate("EWMA_1M", 2, _EWMA1M) conn.create_aggregate("EWMA_1H", 2, _EWMA1H) conn.create_aggregate("EWMA_1D", 2, _EWMA1D) conn.create_aggregate("EWMA_7D", 2, _EWMA7D) conn.create_aggregate("EWMA_30D", 2, _EWMA30D) conn.create_aggregate("EWMA_90D", 2, _EWMA90D) conn.create_aggregate("EWMA_365D", 2, _EWMA365D) conn.create_aggregate("FIRST", 2, _First) conn.create_aggregate("KURTOSIS", 1, _Kurtosis) conn.create_aggregate("LAST", 2, _Last) conn.create_aggregate("MEDIAN", 1, _Median) conn.create_aggregate("MODE", 1, _Mode) conn.create_aggregate("NUM_MAX", 1, _NumMax) conn.create_aggregate("NUM_MIN", 1, _NumMin) conn.create_aggregate("Q1", 1, _Q1) conn.create_aggregate("Q5", 1, _Q5) conn.create_aggregate("Q10", 1, _Q10) conn.create_aggregate("Q25", 1, _Q25) conn.create_aggregate("Q75", 1, _Q75) conn.create_aggregate("Q90", 1, _Q90) conn.create_aggregate("Q95", 1, _Q95) conn.create_aggregate("Q99", 1, _Q99) conn.create_aggregate("SKEW", 1, _Skew) conn.create_aggregate("STDDEV", 1, _Stddev) conn.create_aggregate("TIME_SINCE_FIRST_MAXIMUM", 2, _TimeSinceFirstMaximum) conn.create_aggregate("TIME_SINCE_FIRST_MINIMUM", 2, _TimeSinceFirstMinimum) conn.create_aggregate("TIME_SINCE_LAST_MAXIMUM", 2, _TimeSinceLastMaximum) conn.create_aggregate("TIME_SINCE_LAST_MINIMUM", 2, _TimeSinceLastMinimum) conn.create_aggregate("TREND", 2, _Trend) conn.create_aggregate("VAR", 1, _Var) conn.create_aggregate("VARIATION_COEFFICIENT", 1, _VariationCoefficient) return conn