# Copyright 2021 The SQLNet Company GmbH
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
"""
Custom class for handling the plots of a pipeline.
"""
import json
import numpy as np
import getml.communication as comm
[docs]class Plots:
"""
Custom class for handling the
plots generated by the pipeline.
Example:
.. code-block:: python
recall, precision = my_pipeline.plots.precision_recall_curve()
fpr, tpr = my_pipeline.plots.roc_curve()
"""
# ----------------------------------------------------------------
def __init__(self, name):
if not isinstance(name, str):
raise ValueError("'name' must be a str.")
self.name = name
# ------------------------------------------------------------
[docs] def lift_curve(self, target_num=0):
"""
Returns the data for the lift curve, as displayed in the getML monitor.
This requires that you call
:meth:`~getml.Pipeline.score` first. The data used
for the curve will always be the data from the *last* time
you called :meth:`~getml.Pipeline.score`.
Args:
target_num (int):
Indicates for which target you want to plot the lift
curve. (Pipelines can have more than one target.)
Return:
(:class:`numpy.ndarray`, :class:`numpy.ndarray`):
- The first array is the proportion of samples, usually
displayed on the x-axis.
- The second array is the lift, usually
displayed on the y-axis.
"""
# ------------------------------------------------------------
cmd = dict()
cmd["type_"] = "Pipeline.lift_curve"
cmd["name_"] = self.name
cmd["target_num_"] = target_num
# ------------------------------------------------------------
sock = comm.send_and_get_socket(cmd)
msg = comm.recv_string(sock)
if msg != "Success!":
comm.engine_exception_handler(msg)
# ------------------------------------------------------------
msg = comm.recv_string(sock)
json_obj = json.loads(msg)
# ------------------------------------------------------------
return (np.asarray(json_obj["proportion_"]), np.asarray(json_obj["lift_"]))
# ------------------------------------------------------------
[docs] def precision_recall_curve(self, target_num=0):
"""
Returns the data for the precision-recall curve, as displayed in the getML monitor.
This requires that you call
:meth:`~getml.Pipeline.score` first. The data used
for the curve will always be the data from the *last* time
you called :meth:`~getml.Pipeline.score`.
Args:
target_num (int):
Indicates for which target you want to plot the lift
curve. (Pipelines can have more than one target.)
Return:
(:class:`numpy.ndarray`, :class:`numpy.ndarray`):
- The first array is the recall (a.k.a. true postive rate),
usually displayed on the x-axis.
- The second array is the precision, usually
displayed on the y-axis.
"""
# ------------------------------------------------------------
cmd = dict()
cmd["type_"] = "Pipeline.precision_recall_curve"
cmd["name_"] = self.name
cmd["target_num_"] = target_num
# ------------------------------------------------------------
sock = comm.send_and_get_socket(cmd)
msg = comm.recv_string(sock)
if msg != "Success!":
comm.engine_exception_handler(msg)
# ------------------------------------------------------------
msg = comm.recv_string(sock)
json_obj = json.loads(msg)
# ------------------------------------------------------------
return (np.asarray(json_obj["tpr_"]), np.asarray(json_obj["precision_"]))
# ------------------------------------------------------------
[docs] def roc_curve(self, target_num=0):
"""
Returns the data for the ROC curve, as displayed in the getML monitor.
This requires that you call
:meth:`~getml.Pipeline.score` first. The data used
for the curve will always be the data from the *last* time
you called :meth:`~getml.Pipeline.score`.
Args:
target_num (int):
Indicates for which target you want to plot the lift
curve. (Pipelines can have more than one target.)
Return:
(:class:`numpy.ndarray`, :class:`numpy.ndarray`):
- The first array is the false positive rate, usually
displayed on the x-axis.
- The second array is the true positive rate, usually
displayed on the y-axis.
"""
# ------------------------------------------------------------
cmd = dict()
cmd["type_"] = "Pipeline.roc_curve"
cmd["name_"] = self.name
cmd["target_num_"] = target_num
# ------------------------------------------------------------
sock = comm.send_and_get_socket(cmd)
msg = comm.recv_string(sock)
if msg != "Success!":
comm.engine_exception_handler(msg)
# ------------------------------------------------------------
msg = comm.recv_string(sock)
json_obj = json.loads(msg)
# ------------------------------------------------------------
return (np.asarray(json_obj["fpr_"]), np.asarray(json_obj["tpr_"]))
# ----------------------------------------------------------------