Source code for getml.hyperopt.load_hyperopt

# Copyright 2021 The SQLNet Company GmbH

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.

"""Loads a hyperparameter optimization object from the getML engine into Python."""

from getml.data import Placeholder
from getml.pipeline import Pipeline
from getml.predictors import LinearRegression
from getml.pipeline.helpers2 import _make_dummy


from .hyperopt import (
    GaussianHyperparameterSearch,
    LatinHypercubeSearch,
    RandomSearch,
    _get_json_obj,
)


[docs]def load_hyperopt(name): """Loads a hyperparameter optimization object from the getML engine into Python. Args: name (str): The name of the hyperopt to be loaded. Returns: A :class:`~getml.hyperopt.GaussianHyperparameterSearch` that is a handler for the pipeline signified by name. """ # This will be overwritten by .refresh(...) anyway dummy_pipeline = _make_dummy("123456") dummy_param_space = {"predictors": [{"reg_lambda": [0.0, 1.0]}]} json_obj = _get_json_obj(name) if json_obj["type_"] == "GaussianHyperparameterSearch": return GaussianHyperparameterSearch( param_space=dummy_param_space, pipeline=dummy_pipeline )._parse_json_obj(json_obj) if json_obj["type_"] == "LatinHypercubeSearch": return LatinHypercubeSearch( param_space=dummy_param_space, pipeline=dummy_pipeline )._parse_json_obj(json_obj) if json_obj["type_"] == "RandomSearch": return RandomSearch( param_space=dummy_param_space, pipeline=dummy_pipeline )._parse_json_obj(json_obj) raise ValueError("Unknown type: '" + json_obj["type_"] + "'!")