Source code for getml.data.helpers

# Copyright 2021 The SQLNet Company GmbH

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.

"""
Collection of helper functions that are not intended to be used by
the end-user.
"""

import json
import numbers
import os
import random
import socket
import string
from typing import Any, Dict, List

import numpy as np
import pandas as pd  # type: ignore
import pyarrow as pa  # type: ignore
from pyarrow import parquet  # type: ignore

import getml.communication as comm
from getml import constants, database
from getml.constants import COMPARISON_ONLY, TIME_STAMP
from getml.database import _retrieve_urls
from getml.database.helpers import _retrieve_temp_dir

from .columns import (
    BooleanColumnView,
    FloatColumn,
    FloatColumnView,
    StringColumn,
    StringColumnView,
    from_value,
)
from .roles import (
    _all_roles,
    _categorical_roles,
    _numerical_roles,
    time_stamp,
    unused_float,
    unused_string,
)
from .subroles import _all_subroles

# --------------------------------------------------------------------


[docs]def list_data_frames(): """Lists all available data frames of the project. Examples: .. code-block:: python d, _ = getml.datasets.make_numerical() getml.data.list_data_frames() d.save() getml.data.list_data_frames() Returns: dict: Dict containing lists of strings representing the names of the data frames objects * 'in_memory' held in memory (RAM). * 'on_disk' stored on disk. """ cmd = dict() cmd["type_"] = "list_data_frames" cmd["name_"] = "" sock = comm.send_and_get_socket(cmd) msg = comm.recv_string(sock) if msg != "Success!": comm.engine_exception_handler(msg) json_str = comm.recv_string(sock) sock.close() return json.loads(json_str)
# -------------------------------------------------------------------- def _check_if_exists(colnames, all_colnames): for col in colnames: if col in all_colnames: raise ValueError("Duplicate column: '" + col + "'!") all_colnames.append(col) return all_colnames # -------------------------------------------------------------------- def _check_join_key(candidate, join_keys): if isinstance(candidate, str): candidate = [candidate] return [can for can in candidate if can not in join_keys] # -------------------------------------------------------------------- def _empty_data_frame(): return "Empty getml.DataFrame\nColumns: []\n" # -------------------------------------------------------------------- def _exists_in_memory(name): if not isinstance(name, str): raise TypeError("'name' must be of type str") all_df = list_data_frames() return name in all_df["in_memory"] # -------------------------------------------------------------------- def _extract_shape(cmd, name): shape = cmd[name + "_shape_"] shape = np.asarray(shape).astype(np.int32) return shape.tolist() # -------------------------------------------------------------------- def _finditems(key, dct): if key in dct: yield dct[key] for k, v in dct.items(): if isinstance(v, dict): yield from _finditems(key, v) # -------------------------------------------------------------------- def _get_column(name, columns): for col in columns: if col.name == name: return col return None # -------------------------------------------------------------------- def _handle_cols(cols): """ Handles cols as supplied to DataFrame methods. Returns a list of column names. """ if not isinstance(cols, list): cols = [cols] if not _is_typed_list(cols, (str, FloatColumn, StringColumn)): raise TypeError( "'cols' must be either a string, a FloatColumn, " "a StringColumn, or a list thereof." ) names = [] for col in cols: if isinstance(col, list): names.extend(_handle_cols(col)) if isinstance(col, str): names.append(col) if isinstance(col, (FloatColumn, StringColumn)): names.append(col.name) return names # -------------------------------------------------------------------- def _handle_multiple_join_keys(join_keys): on = [(jk, jk) if isinstance(jk, str) else jk for jk in join_keys] left_join_keys = [o[0] for o in on] right_join_keys = [o[1] for o in on] ljk, rjk = _merge_join_keys(left_join_keys, right_join_keys) return (ljk, rjk) # -------------------------------------------------------------------- def _handle_on(on): if on is None: return (constants.NO_JOIN_KEY, constants.NO_JOIN_KEY) if isinstance(on, list): return _handle_multiple_join_keys(on) return on # -------------------------------------------------------------------- def _handle_ts(ts): if ts is None: return ("", "") return ts # -------------------------------------------------------------------- def _is_numerical_type(coltype): return coltype in [ int, float, np.int_, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float_, np.float16, np.float32, np.float64, ] # -------------------------------------------------------------------- def _is_subclass_list(some_list, parent): is_subclass_list = isinstance(some_list, list) is_subclass_list = is_subclass_list and all( [issubclass(type(ll), parent) for ll in some_list] ) return is_subclass_list # -------------------------------------------------------------------- def _is_typed_dict(some_dict, key_types, value_types): if not isinstance(key_types, list): key_types = [key_types] if not isinstance(value_types, list): value_types = [value_types] is_typed_dict = isinstance(some_dict, dict) is_typed_dict = is_typed_dict and all( [any([isinstance(key, t) for t in key_types]) for key in some_dict.keys()] ) is_typed_dict = is_typed_dict and all( [any([isinstance(val, t) for t in value_types]) for val in some_dict.values()] ) return is_typed_dict # -------------------------------------------------------------------- def _is_typed_list(some_list, types): if isinstance(types, list): types = tuple(types) is_typed_list = isinstance(some_list, list) is_typed_list = is_typed_list and all([isinstance(ll, types) for ll in some_list]) return is_typed_list # -------------------------------------------------------------------- def _is_non_empty_typed_list(some_list, types): return _is_typed_list(some_list, types) and len(some_list) > 0 # ----------------------------------------------------------------- def _is_unsupported_type(coltype): return any( [ pa.types.is_decimal(coltype), pa.types.is_dictionary(coltype), pa.types.is_large_list(coltype), pa.types.is_list(coltype), pa.types.is_map(coltype), pa.types.is_struct(coltype), pa.types.is_union(coltype), ] ) # ----------------------------------------------------------------- def _make_id(): letters = string.ascii_letters + string.digits return "".join([random.choice(letters) for _ in range(6)]) # -------------------------------------------------------------------- def _make_default_slice(slc, end): start = slc.start or 0 start = start if start >= 0 else end + start stop = slc.stop or end stop = stop if stop >= 0 else end + stop step = slc.step or 1 return start, stop, step # -------------------------------------------------------------------- def _merge_join_keys(join_key, other_join_key): begin = constants.MULTIPLE_JOIN_KEYS_BEGIN end = constants.MULTIPLE_JOIN_KEYS_END sep = constants.JOIN_KEY_SEP len_jk = len_other_jk = 1 if not other_join_key: other_join_key = join_key if _is_typed_list(join_key, str): len_jk = len(join_key) if len_jk > 1: join_key = begin + sep.join(join_key) + end else: join_key = join_key[0] if _is_typed_list(other_join_key, str): len_other_jk = len(other_join_key) if len_other_jk > 1: other_join_key = begin + sep.join(other_join_key) + end else: other_join_key = other_join_key[0] if len_jk != len_other_jk: raise ValueError( "The number of join keys passed to " + "'join_key' and 'other_join_key' " + "must match!" ) return join_key, other_join_key # -------------------------------------------------------------------- def _modify_pandas_columns(pandas_df): pandas_df_copy = pandas_df pandas_df_copy.columns = np.asarray(pandas_df.columns).astype(str).tolist() return pandas_df_copy # -------------------------------------------------------------------- def _remove_trailing_underscores(some_dict): new_dict = dict() for kkey in some_dict: new_key = kkey if kkey[-1] == "_": new_key = kkey[:-1] if isinstance(some_dict[kkey], dict): new_dict[new_key] = _remove_trailing_underscores(some_dict[kkey]) elif isinstance(some_dict[kkey], list): new_dict[new_key] = [ _remove_trailing_underscores(elem) if isinstance(elem, dict) else elem for elem in some_dict[kkey] ] else: new_dict[new_key] = some_dict[kkey] return new_dict # -------------------------------------------------------------------- def _replace_non_alphanumeric(string: str) -> str: replaced = "".join([" " if not c.isalnum() else c for c in list(string)]) stripped = replaced.strip() result = stripped.replace(" ", "_") while "___" in result: result.replace("___", "__") return result # -------------------------------------------------------------------- def _replace_non_alphanumeric_cols(df_or_view): """ Many databases only accept alphanumetic characters and underscores. This is meant to handle these problems. """ non_alnum_colnames = [ cname for cname in df_or_view.colnames if not cname.isalnum() and _replace_non_alphanumeric(cname) != cname ] if not non_alnum_colnames: return df_or_view for old_name in non_alnum_colnames: col = df_or_view[old_name] new_name = _replace_non_alphanumeric(old_name) if new_name != old_name: df_or_view = df_or_view.with_column( col=col, name=new_name, role=df_or_view.roles.infer(old_name), subroles=col.subroles, unit=col.unit, time_formats=None, ) return df_or_view.drop(non_alnum_colnames) # -------------------------------------------------------------------- def _update_sniffed_roles(sniffed_roles, roles): # ------------------------------------------------------- if not isinstance(roles, dict): raise TypeError("roles must be a dict!") if not isinstance(sniffed_roles, dict): raise TypeError("sniffed_roles must be a dict!") for role in roles: if not _is_typed_list(roles[role], str): raise TypeError("Entries in roles must be lists of str!") for role in sniffed_roles: if not _is_typed_list(sniffed_roles[role], str): raise TypeError("Entries in sniffed_roles must be lists of str!") # ------------------------------------------------------- for new_role in roles: for colname in roles[new_role]: for old_role in sniffed_roles: if colname in sniffed_roles[old_role]: sniffed_roles[old_role].remove(colname) break if new_role in sniffed_roles: sniffed_roles[new_role] += [colname] else: sniffed_roles[new_role] = [colname] # ------------------------------------------------------- return sniffed_roles # ------------------------------------------------------------ def _send_numpy_array(col, numpy_array: np.ndarray): # ------------------------------------------- sock = comm.send_and_get_socket(col.cmd) # ------------------------------------------- def _make_table(numpy_array) -> pa.Table: data_frame = pd.DataFrame() data_frame[col.name] = numpy_array return pa.Table.from_pandas(data_frame) # ------------------------------------------- table = _make_table(numpy_array) with sock.makefile(mode="wb") as sink: batches = table.to_batches() with pa.ipc.new_stream(sink, table.schema) as writer: for batch in batches: writer.write_batch(batch) # ------------------------------------------- msg = comm.recv_string(sock) if msg != "Success!": comm.engine_exception_handler(msg) # -------------------------------------------------------------------- def _sniff_arrow(table): return _sniff_schema(table.schema) # -------------------------------------------------------------------- def _sniff_csv( fnames, num_lines_sniffed=1000, quotechar='"', sep=",", skip=0, colnames=None ): """Sniffs a list of CSV files and returns the result as a dictionary of roles. Args: fnames (List[str]): The list of CSV file names to be read. num_lines_sniffed (int, optional): Number of lines analysed by the sniffer. quotechar (str, optional): The character used to wrap strings. sep (str, optional): The character used for separating fields. skip (int, optional): Number of lines to skip at the beginning of each file. colnames(List[str] or None, optional): The first line of a CSV file usually contains the column names. When this is not the case, you need to explicitly pass them. Returns: dict: Keyword arguments (kwargs) that can be used to construct a DataFrame. """ # ---------------------------------------------------------------- fnames_ = _retrieve_urls(fnames, verbose=False) # ---------------------------------------------------------------- # Prepare command. cmd = dict() cmd["name_"] = "" cmd["type_"] = "Database.sniff_csv" cmd["dialect_"] = "python" cmd["fnames_"] = fnames_ cmd["num_lines_sniffed_"] = num_lines_sniffed cmd["quotechar_"] = quotechar cmd["sep_"] = sep cmd["skip_"] = skip cmd["conn_id_"] = "default" if colnames is not None: cmd["colnames_"] = colnames # ---------------------------------------------------------------- # Send JSON command to engine. sock = comm.send_and_get_socket(cmd) # ---------------------------------------------------------------- # Make sure that everything went well. msg = comm.recv_string(sock) if msg != "Success!": sock.close() raise IOError(msg) # ---------------------------------------------------------------- roles = comm.recv_string(sock) sock.close() return json.loads(roles) # -------------------------------------------------------------------- def _sniff_db(table_name, conn=None): """ Sniffs a table in the database and returns a dictionary of roles. Args: table_name (str): Name of the table to be sniffed. conn (:class:`~getml.database.Connection`, optional): The database connection to be used. If you don't explicitly pass a connection, the engine will use the default connection. Returns: dict: Keyword arguments (kwargs) that can be used to construct a DataFrame. """ # ------------------------------------------- conn = conn or database.Connection() # ---------------------------------------------------------------- # Prepare command. cmd = dict() cmd["name_"] = table_name cmd["type_"] = "Database.sniff_table" cmd["conn_id_"] = conn.conn_id # ---------------------------------------------------------------- # Send JSON command to engine. sock = comm.send_and_get_socket(cmd) # ---------------------------------------------------------------- # Make sure that everything went well. msg = comm.recv_string(sock) if msg != "Success!": sock.close() raise Exception(msg) # ---------------------------------------------------------------- roles = comm.recv_string(sock) sock.close() return json.loads(roles) # -------------------------------------------------------------------- def _sniff_json(json_str): """Sniffs a JSON str and returns the result as a dictionary of roles. Args: json_str (str): The JSON string to be sniffed. Returns: dict: Roles that can be used to construct a DataFrame. """ json_dict = json.loads(json_str) roles = dict() roles["unused_float"] = [] roles["unused_string"] = [] for cname, col in json_dict.items(): if _is_numerical_type(np.array(col).dtype): roles["unused_float"].append(cname) else: roles["unused_string"].append(cname) return roles # -------------------------------------------------------------------- def _sniff_parquet(fname): schema = parquet.read_schema(fname) return _sniff_schema(schema) # -------------------------------------------------------------------- def _sniff_pandas(pandas_df): """Sniffs a pandas.DataFrame and returns the result as a dictionary of roles. Args: pandas_df (pandas.DataFrame): The pandas.DataFrame to be sniffed. Returns: dict: Roles that can be used to construct a DataFrame. """ roles = dict() roles["unused_float"] = [] roles["unused_string"] = [] colnames = pandas_df.columns coltypes = pandas_df.dtypes for cname, ctype in zip(colnames, coltypes): if _is_numerical_type(ctype): roles["unused_float"].append(cname) else: roles["unused_string"].append(cname) return roles # -------------------------------------------------------------------- def _sniff_s3( bucket, keys, region, num_lines_sniffed=1000, sep=",", skip=0, colnames=None ): """Sniffs a list of CSV files located in an S3 bucket and returns the result as a dictionary of roles. Args: bucket (str): The bucket from which to read the files. keys (List[str]): The list of keys (files in the bucket) to be read. region (str): The region in which the bucket is located. num_lines_sniffed (int, optional): Number of lines analysed by the sniffer. sep (str, optional): The character used for separating fields. skip (int, optional): Number of lines to skip at the beginning of each file. colnames(List[str] or None, optional): The first line of a CSV file usually contains the column names. When this is not the case, you need to explicitly pass them. Returns: dict: Keyword arguments (kwargs) that can be used to construct a DataFrame. """ # ---------------------------------------------------------------- # Prepare command. cmd = dict() cmd["name_"] = "" cmd["type_"] = "Database.sniff_s3" cmd["bucket_"] = bucket cmd["dialect_"] = "python" cmd["keys_"] = keys cmd["num_lines_sniffed_"] = num_lines_sniffed cmd["region_"] = region cmd["sep_"] = sep cmd["skip_"] = skip cmd["conn_id_"] = "default" if colnames is not None: cmd["colnames_"] = colnames # ---------------------------------------------------------------- # Send JSON command to engine. sock = comm.send_and_get_socket(cmd) # ---------------------------------------------------------------- # Make sure that everything went well. msg = comm.recv_string(sock) if msg != "Success!": sock.close() raise IOError(msg) # ---------------------------------------------------------------- roles = comm.recv_string(sock) sock.close() return json.loads(roles) # -------------------------------------------------------------------- def _sniff_schema(schema: pa.Schema): roles: Dict[str, List[str]] = {} roles["unused_float"] = [] roles["unused_string"] = [] colnames = schema.names coltypes = schema.types for cname, ctype in zip(colnames, coltypes): if _is_unsupported_type(ctype): continue if _is_numerical_type(ctype.to_pandas_dtype()): roles["unused_float"].append(cname) else: roles["unused_string"].append(cname) return roles # -------------------------------------------------------------------- def _check_role(role): correct_role = isinstance(role, str) correct_role = correct_role and role in _all_roles if not correct_role: raise ValueError( """'role' must be None or of type str and in """ + str(_all_roles) + "." ) # ------------------------------------------------------------ def _to_arrow(df_or_view: Any): df_or_view.refresh() cmd: Dict[str, Any] = {} typename = type(df_or_view).__name__ cmd["type_"] = typename + ".to_arrow" cmd["name_"] = df_or_view.name if typename == "DataFrame" else "" if typename == "View": cmd["view_"] = df_or_view._getml_deserialize() sock = comm.send_and_get_socket(cmd) msg = comm.recv_string(sock) if msg != "Success!": comm.engine_exception_handler(msg) with sock.makefile(mode="rb") as stream: with pa.ipc.open_stream(stream) as reader: return reader.read_all() # ------------------------------------------------------------ def _to_parquet(df_or_view: Any, fname: str, compression: str): # ------------------------------------------------------------ df_or_view.refresh() # ------------------------------------------------------------ if not isinstance(fname, str): raise TypeError("'fname' must be of type str") if not isinstance(compression, str): raise TypeError("'compression' must be of type str") # ------------------------------------------------------------ fname_ = os.path.abspath(fname) # ------------------------------------------------------------ cmd: Dict[str, Any] = {} typename = type(df_or_view).__name__ cmd["type_"] = typename + ".to_parquet" cmd["name_"] = df_or_view.name if typename == "DataFrame" else "" cmd["fname_"] = fname_ cmd["compression_"] = compression if typename == "View": cmd["view_"] = df_or_view._getml_deserialize() comm.send(cmd) # ------------------------------------------------------------ def _to_pyspark(df_or_view: Any, name: str, spark: Any): if df_or_view.ncols() == 0: raise ValueError( "Cannot transform '" + df_or_view.name + "' to pyspark.DataFrame, because it contains no columns." ) temp_dir = _retrieve_temp_dir() os.makedirs(temp_dir, exist_ok=True) path = os.path.join(temp_dir, name + ".parquet") _replace_non_alphanumeric_cols(df_or_view).to_parquet(path) spark_df = spark.read.parquet(path) spark_df.createOrReplaceTempView(name) spark.sql("CACHE TABLE `" + name + "`;") os.remove(path) return spark_df # ------------------------------------------------------------ def _transform_col(col, role, is_boolean, is_float, is_string, time_formats): if (is_boolean or is_float) and role in _categorical_roles: return col.as_str() # pytype: disable=attribute-error if (is_boolean or is_string) and role in _numerical_roles: if role == time_stamp: return col.as_ts( # pytype: disable=attribute-error time_formats=time_formats ) return col.as_num() # pytype: disable=attribute-error return col # -------------------------------------------------------------------- def _transform_timestamps(time_stamps): """Transforming a time stamp using to_numeric will result in the number of nanoseconds since the beginning of UNIX time. We want the number of seconds since UNIX time.""" if not isinstance(time_stamps, pd.DataFrame): raise TypeError("'time_stamps' must be a pandas.DataFrame!") transformed = pd.DataFrame() for colname in time_stamps.columns: if pd.api.types.is_numeric_dtype(time_stamps[colname]): transformed[colname] = time_stamps[colname] elif pd.api.types.is_datetime64_ns_dtype(time_stamps[colname]): transformed[colname] = ( time_stamps[[colname]] .apply(pd.to_datetime, errors="coerce") .apply(pd.to_numeric, errors="coerce") .apply(lambda val: val / 1.0e9)[colname] ) else: raise TypeError( """ Column '""" + colname + """' has the wrong type! If you want to send a numpy array or a column in a pandas.DataFrame to the engine as a time_stamp, its type must either be numerical or numpy.datetime64. To fix this problem, you can do one of the following: 1) Read it in as an unused_string and then use set_role(...) to make it a time stamp. (You might have to explicitly set time_formats.) 2) Cast your column or array as a numerical value or a numpy.datetime64.""" ) return transformed.values # -------------------------------------------------------------------- def _with_column(col, name, role=None, subroles=None, unit="", time_formats=None): # ------------------------------------------------------------ if isinstance(col, (bool, str, numbers.Number, np.datetime64)): col = from_value(col) # ------------------------------------------------------------ if not isinstance( col, ( FloatColumn, FloatColumnView, StringColumn, StringColumnView, BooleanColumnView, ), ): raise TypeError("'col' must be a getml.data.Column or a value!") # ------------------------------------------------------------ is_boolean = col.cmd["type_"] == "BooleanColumnView" if not is_boolean: subroles = subroles or col.subroles # pytype: disable=attribute-error unit = unit or col.unit # pytype: disable=attribute-error # ------------------------------------------------------------ subroles = subroles or [] if isinstance(subroles, str): subroles = [subroles] # ------------------------------------------------------------ if not isinstance(name, str): raise TypeError("'name' must be of type str") if not _is_typed_list(subroles, str): raise TypeError("'subroles' must be of type str, List[str] or None.") if not isinstance(unit, str): raise TypeError("'unit' must be of type str") # ------------------------------------------------------------ invalid_subroles = [r for r in subroles if r not in _all_subroles] if invalid_subroles: raise ValueError( "'subroles' must be from getml.data.subroles, " + "meaning it is one of the following: " + str(_all_subroles) + ", got " + str(invalid_subroles) ) # ------------------------------------------------------------ time_formats = time_formats or constants.TIME_FORMATS # ------------------------------------------------------------ is_string = "StringColumn" in col.cmd["type_"] is_float = "FloatColumn" in col.cmd["type_"] # ------------------------------------------------------------ correct_coltype = is_boolean or is_string or is_float if not correct_coltype: raise TypeError("""'col' must be a getml.data.Column.""") # ------------------------------------------------------------ if role is None: role = unused_float if is_float else unused_string _check_role(role) # ------------------------------------------------------------ return ( _transform_col(col, role, is_boolean, is_float, is_string, time_formats), role, subroles, ) # -------------------------------------------------------------------- def _with_role(base, cols, role, time_formats): # ------------------------------------------------------------ time_formats = time_formats or constants.TIME_FORMATS # ------------------------------------------------------------ names = _handle_cols(cols) if not isinstance(role, str): raise TypeError("'role' must be str.") if not _is_non_empty_typed_list(time_formats, str): raise TypeError("'time_formats' must be a non-empty list of str") # ------------------------------------------------------------ for nname in names: if nname not in base.colnames: raise ValueError("No column called '" + nname + "' found.") if role not in _all_roles: raise ValueError( "'role' must be one of the following values: " + str(_all_roles) ) # ------------------------------------------------------------ view = base for name in names: col = view[name] unit = TIME_STAMP + COMPARISON_ONLY if role == time_stamp else col.unit view = view.with_column( col=col, name=name, role=role, subroles=col.subroles, unit=unit, time_formats=time_formats, ) # ------------------------------------------------------------ return view # ------------------------------------------------------------ def _with_subroles(base, cols, subroles, append=False): names = _handle_cols(cols) if isinstance(subroles, str): subroles = [subroles] if not _is_non_empty_typed_list(names, str): raise TypeError("'names' must be either a string or a list of strings.") if not _is_typed_list(subroles, str): raise TypeError("'subroles' must be either a string or a list of strings.") if not isinstance(append, bool): raise TypeError("'append' must be a bool.") # ------------------------------------------------------------ if [r for r in subroles if r not in _all_subroles]: raise ValueError( "'subroles' must be from getml.data.subroles, " + "meaning it is one of the following: " + str(_all_subroles) ) # ------------------------------------------------------------ view = base for name in names: col = view[name] view = view.with_column( col=col, name=name, role=view.roles.infer(name), subroles=subroles, unit=col.unit, time_formats=None, ) # ------------------------------------------------------------ return view # ------------------------------------------------------------ def _with_unit(base, cols, unit, comparison_only=False): names = _handle_cols(cols) if not isinstance(unit, str): raise TypeError("Parameter 'unit' must be a str.") # ------------------------------------------------------------ if comparison_only: unit += constants.COMPARISON_ONLY # ------------------------------------------------------------ view = base for name in names: col = view[name] view = view.with_column( col=col, name=name, role=view.roles.infer(name), subroles=col.subroles, unit=unit, time_formats=None, ) # ------------------------------------------------------------ return view # --------------------------------------------------------------------